
T--

r-- NAVAL POSTGRADUATE SCHOOL
N Monterey, California

DTIC

THESIS

INTERFACE-DRIVEN SOFTWARE
DEVELOPMENT TOOL

by

Heung-Taek Kim

December, 1990

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

91-14323 9 02
IIIN1 III IIDIIII llD1ll ll 9 1 B8 0II

Unclassified
SE(UIIly CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE 7 M No 0704-0180

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release:
2b. DECLASSIFICATION /DOWNCTADING SCHEDULE distribution is unliuited

4 PERFOIMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6i NAME OF PERFORMING ORGANIZATION 6b OrFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School ()f applicable) Naval Postgraduate School

Cc. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ila NAME OF I'UNDING/SPONSORING Bb. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

8(. AI)ODRLSS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

INTERFACE-DRIVEN SOFTWARE DEVELOPMENT TOOL

12 PERSONAL AUTHOR(S) Kim, leung-Taek

13a TYPE OF REPORT 13b TIME COVERED T4 DATE OF REPORT (Year, Month, Day) Is PAGE COUNT

Master's Thesis FROM O_ December 1990 103

16 SUPPLEMENTARY NOTATION The views expressed in VIS tnesis are those ot tne autor an o

not reflect the official policy or position of the Departnent of Defense or the U.S.

Goverrvnt.

17 COSAlI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FI l D GROUP SUB-GROUP Visual hIterface, Database Manageinent System,

Human-cornputer interaction, Prototype

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

We live in an age where the volume of paper-based information is steadily expanding. Personal

computers have a great potcnLial as tools for managing information. Effectiveness of using personal

coniputcrs is dctermined by how easy it is to use them, since majority of the end-users are not computer

cxpcrts. Compared with the advances in software design, the important issue of computer interface has

bcgun to be addhcssed recently. There has been a research joining the database with the graphical

iitcifacc to give users an easy-to-use method for accessing the database. With this, users navigate

through the database by following the links from one piece of information to the next. There are several

classcs of softwares (languages) to build visual user interfaces: traditional, object-oriented, and interface-

divcn languages. hi this thesis, we used an interface-driven software named Guide to build a prototype

visud m;cr interface to analyze the effectiveness of interface-driven software.

20 DIST[IlIUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

IJNCIASSIFIED/UNLIMITED 0 SAME AS RPT [] DTIC USERS Unclassified

21a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

C. AhoRNas Wu I b (408)646-3391 CS/Wq

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

i UNCLASSIFED

Approved for public release; distribution is unlimited.

INTERFACE-DRIVEN SOFTWARE DEVELOPMENT TOOL

by

Heung-Taek Kim

Captain, Republic of Korean Army

B.S., Korea Military Academy, 1985

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1990

Author: ± L______________________2______
Heung-Taek Kim

Approved by: C__s.___________,____
C. ha~s W, TesiAdvisor

Myung W. Suh, Second Reader

Robert B. McGhee, Chairman, Department of Computer Technology

ii

ABSTRACT

We live in an age where the volume of paper-based information is steadily expanding.

Personal computers have a great potential as tools for managing information. Effectiveness

of using personal computers is determined by how easy it is to use them, since majority of

the end-users are not computer experts. Compared with the advances in software design,

the important issue of computer interface has begun to be addressed recently. There has

been a research joining the database with the graphical interface to give users an easy-to-use

method for accessing the database. With this, users navigate through the database by

following the links from one piece of information to the next. There are several classes of

softwares (languages) to build visual user interfaces: traditional, object-oriented, and

interface-driven languages. In this thesis, we used an interface-driven software named

Guide to build a prototype visual user interface to analyze the effectiveness of interface-

driven software.

Di_

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. BACKGROUND ... 1

B. SCOPE OF THESIS ... I

C. THESIS ORGANIZATION ... 2

II. VISUAL INTERFACE FOR DATABASE ... 4

A. BACKGROUND ... 4

B. RELATED WORK ... 5

1. G L A D5

2. A R G O S .. 5

C. CONCEPT OF OBJECT-ORIENTED LANGUAGE 6

D. BUILDING INTERFACES BASED ON OBJECTS 7

E. OUR APPROACH ... 7

II. GUIDE AND ITS STRENGTH .. 10

A. GUIDE AND ITS ENVIRONMENT .. 10

1. M S-W indow s .. 10

2. System Requirements .. 10

B. FEATURES OF GUIDE .. I I

C. LANGUAGE COMPARISONS IN TERMS OF VISUAL INTERFACE 13

iv

1. Traditional Languages 13

2. O bject-O riented Languages ... 14

3. Interface-Driven Languages ... 14

IV . D ESIG N CON SID ERA TION S .. 18

A. GUIDELINES FROM HUMAN INTERFACES PERSPECTIVE 18

1. A bout H um an .. 18

2. G uidelines ... 18

a. Consistency .. 19

b. Com pleteness .. 19

c. Layering of Functionality ... 19

d. U seful Feedback ... 19

3. U se of Icons .. 20

a. M ake Icons Easy to U se ... 20

b. A void M isleading A nalogies .. 20

c. K eep Population Stereotypes .. 20

d. U se for A ppropriate Purpose .. 21

B. PRINCIPLES FROM PREVIOUS WORK .. 21

1. Principle I ... 21

2. Principle H ... 22

3. Principle III .. 22

4. Principle IV ... 22

v

5. Principle V... 23

6. Principle VI .. 23

C. PRINCIPLES DEVELOPED ... 23

1. Principle VII... 24

2. Principle VIII.. 24

3. Principle IX... 24

4. Principle X... 25

V. IMPLEMENTATION.. 26

A. INTERFACE-DRIVEN SOFTWARE DEVELOPMENT TOOL 26

1. Classes of Softwares For Building Graphical User Interface............... 26

a. Toolkits... 26

b. User Interface Management Systems....................................... 27

2. Evaluation of Guide and Logiix .. 28

a. Compatibility between Guide and Hypercard.............................. 29

B. PORTING IMAGES FROM MACINTOSH 31

C. DEVELOPMENT METHODOLOGY... 32

1. Creation of Documents .. 32

2. Creation of Buttons ... 32

3. Programming... 33

4. Creation of Frames... 36

5. Behaviors of Buttons ... 37

vi

a. The Mouse Pointer Patterns.. 37

b. GoForward ... 38

c. GoBackward ... 38

d. Exit.. 39

e. Help... 40

f. Print... 41

g. Information .. 41

D. SAMPLE SESSION ... 41

VI. CONCLUSIONS ... 61

APPENDIX A - PROGRAM LISTS... 62

1. Srart... 62

2. Deck Profile .. 80

3. Inet Gearbox Assembly Breakdown .. 82

4. Help ... 84

5. Information on Inet Gearbox Assembly .. 87

LIST OF REFERENCES.. 89

INITIAL DISTRIBUTION LIST ... 91

vii

LIST OF FIGURES

Figure 2.1 GLAD ... 9

Figure 2.2 Argos ... 9

Figure 3.1 Layers for M S-windows .. 16

Figure 3.2 Glossary ... 16

Figure 3.3 Control Pannel ... 17

Figure 5.1 Layers for M S-W indows Applications ... 44

Figure 5.2 Dynamic Data Exchange under M S-W indows 44

Figure 5.3 Definition within a Document .. 45

Figure 5.4 Invisible Graphic Element ... 45

Figure 5.5 Not M odeled Dialogue .. 46

Figure 5.6 Set Document Dialogue .. 46

Figure 5.7 Object Structure ... 47

Figure 5.8 Graphic File List ... 47

Figure 5.9 Documents and Frames ... 48

Figure 5.10 M ouse Pointer Pattern Change .. 48

Figure 5.11 Set M ouse Pointer Pattern Dialogue ... 49

Figure 5.12 Exit Dialogue ... 49

Figure 5.13 System Box .. 50

viii

Figure 5.14 Help .. 50

Figure 5.15 Print Dialogue .. 51

Figure 5.16 Information Documenton on Inlet Gearbox Assembly Breakdown 51

Figure 5.17 The First Frame ... 52

Figure 5.18 BattleGroupzule ... 52

Figure 5.19 FFG-7 Side Profile ... 53

Figure 5.20 Deck-profile .. 53

Figure 5.21 Engine Room Level Selection .. 54

Figure 5.22 Engine Room Lower Level Port .. 54

Figure 5.23 Gas Turbine Module .. 55

Figure 5.24 LM 2500 Gas Turbine .. 55

Figure 5.25 GTRB Exploded View .. 56

Figure 5.26 Inlet Gearbox Assembly ... 56

Figure 5.27 Equipment Information .. 57

Figure 5.28 COSAL Information .. 57

Figure 5.29 Navsup Form 1250-1 Information .. 58

Figure 5.30 APL Information ... 58

Figure 5.31 Not M odeled .. 59

Figure 5.32 Help on Document (I) .. 59

Figure 5.33 Help on Document (II) .. 60

Figure 5.34 Save or Not Dialogue .. 60

ix

ACKNOWLEDGEMENTS

I would like to express sincere thanks to those who helped me in every aspect. I

would like to present great thanks to my thesis advisor Professor C. Thomas Wu, and the

second reader Professor Myung W. Suh for their help to finish this thesis.

I would like to thank my family, especially my beloved wife In-Sook Lee for her

ungrudging assistance, my big boy Hong-Bae Kim, and a cute little girl Da-Hae Kim.

And I would like to thank all my families and acquaintances staying in Korea

praying for me and my family.

Finally, I would like to appreciate my country, Republic of Korea, and the United

States of America which have given me a chance to study at Naval Postgraduate School.

x

I. INTRODUCTION

A. BACKGROUND

We live in an age where the volume of paper-based information is steadily expanding,

yet our capacity for dealing with it has not kept pace. Personal computers have a great

potential as tools for managing these information. Effectiveness of using personal

computers is determined by how easy it is to use them, since majority of end-users are

not computer experts. The potentials of this amazing machine are not limited by its

power to compute, but rather by its power to communicate with its human users.

Compared with the advances in software design, the important issue of computer interface

development has begun to be addressed only recently. There has been a research

joining the database management systems with the graphical interfaces to give users a

more convenient, comfortable, and easy-to-use method for accessing database systems.

The database management systems developed so far have interfaces dealing only with text

information. This new approach can deal with not only text information but also

graphics, sound and other types of media that can be attached to computer systems.

B. SCOPE OF THESIS

This thesis explores a framework for the visual interface for accessing databases and

develops a generic visual interface which can be used to navigate through information

systems. In the course of developing the implementation, we tailored this interface to a

1

real database system, Superbase 4 developed by Precision, Inc., and could communicate

with that database through this interface. But, in this thesis, we are only concerned with

the development of generic visual interface: we do not discuss the specific implementation

issues related to any specific database system.

C. THESIS ORGANIZATION

Chapter II consists of five sections. In the first section, we will discuss about the

visual interface. In the second section, we will introduce related works. And in the third

section, we will introduce the concepts of the object-oriented language. And in the fourth

section, it will talk about the benefits of building interfaces based on object. In the fifth

section, we will discuss our approach.

Chapter HI consists of three sections. In the first section, we discuss about a Guide's

working environment. In the second section, some strong points using the hypermedia

software, Cuide, will be introduced. And in the third, we compare three different classes

of languages used for building user interfaces.

Chapter IV consists of three sections. In the first section, we will discuss the rules

or guidelines in developing user interfaces based on human factors engineering. In the

second section, we will explain the principles that has been developed as guidelines to

build visual user interfaces. In the third section, it introduces more principles that the

author has developed during the implementation of the thesis.

Chapter V consists of four sections. In the first section, it vtlks about the

interface-driven software development tools. In the second section, it talks how we

2

ported some of works from other system. In the third section, the details of development

methodology will be discussed. And in the fourth section, a sample session will be

provided.

Chapter VI conclude- with a summary discussion of the thesis and possible future

researches.

3

II. VISUAL INTERFACE FOR DATABASE

A. BACKGROUND

The easy-to-use, direct manipulation interfaces let the user operate directly on the

objects that are visible on the screen, performing rapid, reversible, and incremental

actions. Unlike traditional information retrieval systems in which users access

information using Boolean operations on keyword strings, users of graphical user interface

are free to move between arbitrary chunks of information by simple click of a mouse

button. Users navigate through the information database by following the links from one

piece of information to the next. Such an architecture encourages users to find

information by following a meaningful path from one chunk of information to another

until they reach their objective.

The research on a visual interface for database has been motivated by the lack of an

easy-to-learn and easy-to-use query facility for accessing databases, although relational

query languages such as SQL and QUEL are much better languages than those for

network and hierarchical systems. [Ref. 16]

For database systems to become fully useful as information managers, end-user

participation is indispensable. End users of databases typically have a good understanding

of their application environment, but little familiarity with database technology.

Therefore, we must rely on data processing professionals to develop an application

4

software. Such arrangermient is prohibitively expensive for the coming decades of

information explosion.

Thus we need a different way of user-interaction tool for data definition and

manipulation. The key to the coherent interface must be a simple visual representation

of database [Ref. 16]. Hence the users can visually interact with the system with ease.

B. RELATED WORKS

1. GLAD

One of the current visual-interface system is GLAD (Graphics LAnguage for

Database) which was developed by Professor C. Thomas Wu at Naval Postgraduate

School in Monterey, CA. GLAD has facilities for data definition, minimal data

manipulation, on-line help system, and is able to store and manipulate graphic images as

a part of database [Ref. 17]. Figure 2.1 shows one of its screen dump.

GLAD has been developed and implemented using object-oriented programming

environment, and Actor as its language.

2. ARGOS

This implementation has been developed based upon the concept of paperless

information management being developed for the United States Navy guided missile

frigate. It presents graphical representations of equipment such as pictures and other

interface factor such as audio to supplement the text information contained in the

database. It was developed on Apple Macintosh using Hypercard as its environment and

Hypertalk as its language. Hypercard provides a set of tools to support rapid prototyping

5

and implementation ideas.[Ref. 6] Figure 2.2 shows a sample session of the Argos

implementation.

C. CONCEPT OF OBJECT-ORIENTED LANGUAGE

In object-oriented language, all conceptual entities are modeled as objects. An

ordinary integer or string is as much as an object as is a complex assembly of parts, such

as an aircraft or a submarine. An object consists of some private memory that holds its

state. The private memory is made up of the values for a collection of instance variables.

The value of an instance variable is itself an object and therefore has its own private

memory for its state.

The behavior of an object is encapsulated in methods. Methods consist of code that

manipulates or returns the state of an object. Methods are a part of the definition of the

object. Methods, as well as instance variables are not visible from outside of the object.

Objects can communicate with one another through messages. Messages, together with

any arguments that may be passed with messages, constitute the public interface of an

object. For each message to be understood by an object, there is a corresponding method

that executes the message. An object reacts to a message by executing the corresponding

method and returning an object in response.

A system such as databases may contain an even larger collection of objects. If every

object is to carry its own instance variable names and its own methods, the amount of

information to be specified and stored can become unmanageably large. For this reason,

similar objects are grouped together into a class. All objects belonging to the same class

6

are described by the same instance variables and the same methods. They all respond to

the same messages. Objects that belong to a class are called instances of that class. A

class describes the form (instance variables) of its instances and the operations (methods)

applicable to its instances. Thus, when a message ;s sent to an instance, the method that

implements that message is found in the definition of the class. The instance variables

and methods specified for a class are shared (inherited) by all its subclasses (children in

parent-child pair of a class hierarchy).

D. BUILDING INTERFACES BASED ON OBJECTS

An object-oriented architecture has been shown to be suited to interface construction

[Ref. 8]. Objects are natural for representing the user interface element and supporting

their direct manipulation. The experience shows that, compared with a procedural

implementation, user interfaces implemented in object-oriented approach are significantly

easier to develop and maintain [Ref. 14]. The user communicates with the system, which

is represented on the screen as a world composed of active objects. Each screen object

has its visual representation which defines its appearance, its relation to other screen

objects, and a functional role which governs its behavior.

E. OUR APPROACH

To develop a visual user interface in this thesis, we depend on Guide as a working

environment and Logiix as a programming language, developed by OWL International

Inc.

Guide is designed around an object-oriented information model which presents

7

information as a series of linked "objects" and manages the relationships between them.

Every component in a Guide document, whether it is a single word, phrase, paragraph or

graphic, is represented as an object. Guide and Logiix are not a true object-oriented

environment and language, since it does not possess a clear and explicit concept of class,

inheritance, method, and message which were detailed in the above section. Guide

provides a variety of object types which perform different functions such as buttons.

Using a mouse, users click on buttons to display linked objects. Using the familiar

document metaphor, information in Guide is structured so that users can select the

subjects to display and the level of detail appropriate for their particular needs.

8

create mo~dify open Remiove Quit Fl ri He

CLAD Datsbasts

A HIS Seapto D

MPS Lab EOCI~
Ij ae sty funtuff CO.
Ttst Coneto 1:

Figure 2.1 GLAD

Figure 2.2 ARGOS

9

m. GUIDE AND ITS STRENGTH

A. GUIDE AND ITS WORKING ENVIRONMENT

1. MS-Windows

Windows is a visual extension of MS-DOS that layers itself upon DOS to provide

users with a friendly, graphical interface. Figure 3.1 shows a graphic depiction of this

concept [Ref. 17]. In Windows, users can execute multiple programs simultaneously in

an integrated environment which gives a consistent interface to all the applications.

Windows does not require users to memorize command line commands and their syntax.

This helps users learn all MS-Windows applications at dramatical speed.

2. System Requirements

To run Guide version 3.0, the system must meet the following requirements [Ref.

81:

* A high-resolution enhanced graphics adapter(EGA) or VGA display(color

display is recommended).

* MS-DOS version 3.1 or higher.

* MS-Windows version 2.03 or later.

* A hard disk with at least 2MB of free space.

* At least 640 KB of memory.

10

* The printing device specified when installing MS-Windows.

* A pointing device such as mouse which is compatible with MS-Windows.

B. FEATURES OF GUIDE

Conventional textual documents are limited by a left-to-right, top-to-bottom sequential

structure. By contrast, Guide documents allow users to move from one topic(object) to

another in a non-sequential fashion. [Ref. 8]

Guide documents contain objects. Objects can be single words, sentences, paragraphs,

a graphic, or even a collection of graphics. Just about anything that may be selected with

the mouse can be made into an object. Objects in Guide are composed of three

components: data,presentation attributes, and behavioral attributes. The data component

is the text or graphic that appears on the screen when the object is displayed.

Presentation attributes apply primarily to text objects determining how the data is

displayed such as text styles, color, and so on. Behavioral attributes define the events that

take place when an object is displayed or activated using the mouse.

Guide objects can be linked together. The link starts with one object, the source, in

one file and finishes at another object, the target, in another file. Links are automatically

created between expansion buttons and expansions when objects are defined. For note,

reference, and command buttons, link must be created manually.

Certain objects that are live and can be activated with the mouse are called buttons.

Guide documents can have four different types of buttons: reference buttons, expansion

buttons, note buttons, and command buttons. Reference buttons present cross-reference

11

information in the same document or in another document. Note buttons present

information in a temporary pop-up window, which is useful for providing supplementary

information such as footnotes or definitions of terms. Command buttons pass instructions

contained in a definition to executable files called interpreters, LAUNCH3.EXE,

OPCL3.EXE and SERIAL3.EXE. Users can launch any applications (either MS-Windows

or non-MS-Windows) with the launch interpreter, LAUNCH3.EXE. Users can control

any serial peripherals connected to the serial port of the computer with the interpreter,

SERIAL3.EXE. OPCL3.EXE is an interpreter which allows users to use certain

commands, such as open or close, in the definition of a command button. Expansion

buttons present more detailed information being "hidden" behind them. The information

hidden behind them is called the expansion which also contains either text or graphics,

or both.

Guide provides a transparent graphic element, called an invisible, with which users

place a button on a background graphic in a specific location.

Users can include graphics in a Guide document. The following types of graphics

can be imported into Guide: bit-mapped files (BMP), MS-Windows metafiles (MTF),

tagged image file format (TIFF) files, and PC-Paintbrush files (PCX, PCC). There are

two kinds of graphics: external and internal graphics. An external graphic has a link from

a document. An internal graphic is a part of document being copied into it without being

linked. Guide keeps the information about a graphic element, such information as

whether it is external or internal, and so on.

12

Documents have a natural hierarchical structure that divides topics into related groups,

such as chapters, sections, and so on. Frames provide a way to structure a document by

dividing it into an easily manageable chunk of related information.

Users can easily change the way how windows in Guide looks on the screen with

options. They can also arrange the windows neatly on the screen in a cascading

formation.

The group is a way of making objects mutually exclusive. Grouping is an effective

way to minimize the amount of data readers must shift through at one time.

Users can use the Guide glossary to store items that they use frequently such as

objects such as buttons, and, nearly anything they use frequently reducing the amount of

time they spend on repetitive activities [Figure 3.2].

A control panel is a Guide document containing buttons (icons) that control the

display of information giving users options for the actions such as moving forward or

backward through frames, and so on [Figure 3.3].

C. LANGUAGE COMPARISONS IN TERMS OF VISUAL INTERFACE

This section will discuss the advantages and disadvantages of different kinds of

languages in terms of their use to build visual interfaces.

1. Traditional Languages

Traditional languages, such as Fortran and Pascal, state what should happen rather

than how to make it happen. The interfaces supported by traditional languages are

usually form-based. The user types text into fields or selects options with menus or

13

buttons. There are also often graphical output areas for use by applications. The

application is connected to the interface through global variables that are set and accessed

by both the application and interface. The advantage of traditional language-based

interfaces is that they free the designers from worrying about the sequence of events, so

they can concentrate on the information that is passed back and forth. The disadvantage

is that they support only form-based interfaces. Hence other interfaces must be

hand-coded in the graphical area provideG to applications. They also provide only

preprogrammed, fixed types of interactions. [Ref. 14]

2. Object-Oriented Languages

Object-oriented languages, such as Smalltalk and Actor, provide an object-oriented

framework in which the designer programs the interface. Typically, there are high-level

classes that handle default behavior. The designer specializes these classes to deal with

behavior specific to the interface, using the inheritance mechanism built into

object-oriented languages. These systems can handle highly interactive,

direct-manipulation interfaces, because there is a computational links between the input

and the output that application can modify to provide semantic processing.

Although these systems make it much easier to create interfaces, they are

programming environments and as such are inaccessible to non-programmers. [Ref. 14]

3. Interface-Driven Languages

One of the interface-driven language is Guide. The interface-driven languages are

interactive graphical systems for designing and generating graphical user interfaces. They

14

provide flexibility to the system designer while minimizing the amount of code the

designer must write. Their primary goal is to provide a simple, interactive way in which

a dialogue developer can specify application interfaces. Once the style of the interface

should determined by the developer, he or she should be able to describe with these

languages any interface that could be coded by hand.

They provide a great deal of freedom in representing the control path and

parameters for action routines. The developer may refer to application constants, types,

variables, and function in defining the interface. This ability greatly reduces the number

of steps needed to define the interface. Actions are provided to perform application

functions based on inputs and application values. Multiple control paths may be

represented by the dialogue developer based on inputs, application values, and end-user

characteristics. Inclusion of a developer-defined end-user profile allows the developer to

represent different interfaces within a single system for different end-users. Various

interaction styles and devices can be used, including menus, forms, picking, and keyboard.

The developer may choose among any that are suited to a task and may allow the

end-user to choose among several styles or devices to provide a particular input. [Ref. 10]

15

USERS

DOS

Figure 3.1 Layers for MS-Windows

Ele dk jobM tl,,,qmn QflkV Fo(ne Forn(Mot MAIdvw FI =HELP.

Figure 3.2 Glossary

16

Culde
Meu Edft Seafth -N.ait Plaplay Fomrag Feri klab Wladow FI-HELP

Figure 3.3 Control Panel

17

IV. DESIGN CONSIDERATIONS

A. GUIDELINES FROM HUMAN FACTORS PERSPECTIVE

The following description is based upon human factors engineering to build efficient

and useful user interfaces. The appropriateness of a user interface depends heavily upon

the tasks, the users, and the environment. Therefore, no single user interface can be

equally appropriate for all applications. But some general guidelines for good user

interfaces can be identified with the help of human factors engineering.

1. About Human

During the learning process, users build mental model of how the system behaves.

That is, they create representations in their minds of -.,hat the system can do, what actions

cause what effects, and why those actions cause these effects. Then the models embody

the users' understanding of the system. [Ref. 12].

The mental model represents a physical system or software with some plausible

cascade of casual associations, reflecting the user's understanding of what the system

contains, how it works, and why it works that way. The mental model can be run with

trial, exploratory inputs and observed for its resultant behavior.

2. Guidelines

Following guidelines have been suggested to increase the ability of user's mental

18

models. As such, these guidelines can be helpful in designing user interfaces.

a. Consistency

User interfaces must present consistent information. There are two

consistencies i(, consider: internal and external consistencies. Internal consistency is the

variance in the behavior of the software itself. The use of modes, where things work

differently depending on which mode the user is in, reduces the reception of internal

consistency. External consistency is the extent to which the software behavior matches

other things the user already knows from other contexts. One way to increase external

consistency is providing the user with appropriate metaphors.

b. Completeness

Even a simple system must be complete. If the user has to switch often from

one program to another just to perform what the user consider to be a single task, the

mental model for that system will be more complex.

Providing clear boundaries for the software with a sufficient amount of

functionality within those boundaries makes it easier for users to form mental models.

c. Layering of Functionality

One way to make a simple appearance of a system is to have layer of

functionality. Basic functions are available at the surface layer of the user interface,

while putting more advanced functions in deeper layers.

d. Useful Feedback

19

Explanatory error feedback and help messages can help users construct mental

models of a system. And, users should be allowed to select the amount of explanation

they prefer so that different users can build their mental models at ease.

3. Use of Icons

Human factors engineering strongly recommend the use of icons in user interfaces

to represent objects and actions. In general, icons make the interpretation of information

on a display more direct and easier to learn and use.

There are some rules or suggestions for building interfaces with icons. [Ref. 13]

a. Make Icons Easy to Use

The meanings of the icons must be learned. What is obvious to the designer

may not be obvious to the user. It should be able to develop libraries of tested icons that

have been standardized for specific purpose.

b. Avoid Misleading Analogies

If users understand the meaning of an icon, they develop expectations of how

they can be used based on their understanding of how things work in the real world.

Therefore, we must put the meanings of the real world into icons.

c. Keep Population Stereotypes

A person has his own expectations of how an icon will behavior or can be

acted on. Therefore, we have to keep the population stereotypes about compatibility

between controls and displays to provide adequate information.

20

d. Use for Appropriate Purposes

In some cases, using icons may not result in a better performance. For

example, in calculation, user can do better using numeric key boards than pointing

iconized numeric key boards on screen.

B. PRINCIPLES FROM PREVIOUS WORK

The following principles 1 through 6 have been proposed during the development of

GLAD. Because the visual interface research is in the early stage, there has not yet been

a clear understanding of what constitutes a good user interface [Ref. 3]. And, no single

set of interface rules can be optimal for all environments. However, the identification of

some design principles will help developers in building better interfaces, and making users

accept the interfaces without much confusions, and naturally. Some of these principles

are employed in this implementation while some are not.

1. Principle I

"Be able to provide more information when asked."

This principle dictates the inclusion of a simple help system, a confirmation for

important processing such as deleting a data file or termination of the running session,

explanatory errors, help messages, and so on. When users take an action, the system

must provide a feedback to convince them that a desired action has been taken. For

example, if users want the screen dump to the printer, the system must provide a dialogue

asking how it should be printed, how many copies to be printed, how it should look like

21

(portrait or landscape), asking go ahead or cancel, and so on. If the system says

anything about what it does, then the users will be convinced that their jobs are taken care

of. This may be analogous to the saying that the system must provide an appropriate

feedback mechanism.

2. Principle II

"Be able to recover from the unintended or erroneous operation."

There must be a mechanism to prevent the system from un intended or erroneous

operations so that it maintains consistency. For instance, suppose that a user has removed

a data item during the session. And when that user want to exit the system, he must be

requested to confirm the removal before exit to operating system.

3. Principle III

"Be able to perform the same operation in more than one ways."

For example, instead of selecting the Quit menu option, users may select the

Close option under the system menu box. Or users may double-click the system menu

box to exit the system.

By allowing more than one ways of carrying out the same operation, users will

be able to use the one that they feel most comfortable with. This helps in supporting a

larger number of users. For example, the novice users may prefer using the Quit menu.

But as they become more proficient in interacting with the system, they may prefer to

close by double-clicking the system menu box.

4. Principle IV

22

"Be able to perform the logically equivalent operations in a consistent manner."

As a matter of fact, the consistncy in the screen representation and in the

navigation through an application should always be expected. Therefore, users will easily

remember from one use to the next. For example, the same system menu box and the Exit

menu choice will appear in every whidow. If users know how to use them in one

window, then they know how to use them in any other window of the system.

5. Principle V

"Be able to display multiple information at the same time."

Providing the capability of displaying multiple information will allow the users

to see information in various degree of details.

6. Principle VI

"Be able to display multiple views of the same information."

Multiple display of the same information provides a confidence to users by

allowing them to verify the information with another view of the information. For

example, if it provides a numerical data, and also a graphical data, users will understand

the infonnation clearly and surely.

C. PRINCIPLES DEVELOPED

The following principles have been developed during the implementation of this

thesis. Some of principles may overlay with those presented above; but they are intended

for highlight somewhat different design goals.

23

1. Principle VII

"Users can customize the interface."

Users can customize the system environment for easy use of

the system. Otherwise the users have to be accustomed to the system that has been

developed by others, violating the concept of easy-to-use philosophy.

2. Principle VIII

"The interface must be understood easily and clearly."

It must be stated that a user interface should always have its full meaning and,

therefore, it must be understood clearly. If the interface is too complicated, the users

need guidelines when to use which and what it means making things even more

complicated. For the good user interface, users can understand the meanings and

behaviors of interfaces easily and clearly at one glance,like the traffic signs. That is, the

user interface must be natural for users.

3. Principle IX

"Do not include interfaces which are useless or have no functions."

Some functions may be redundant with other functions. Some functions may be

too hard to use or too difficult to learn how to use, so people simply avoid them. Some

functions are not needed: for example, there are navigation icons which include left arrow

to go to the previous screen, right arrow to get the next screen, termination icon, a icon

which tells it goes to the first screen and to the last screen, and so on; but there can be

24

a methodology to go to the next screen not by using the right arrow but by using the

word(s), phrase, sentence, or graphic element; then the right icon may be useless or less

meaningful to use. Such functions should not be included in the user interface.

4. Principle X

"The interface must attract users' attention."

To be a good user interface, the interface must provide a mechanism which make

users pay their attention when they are on buttons or any other areas that have some

functions or some sort of behaviors. This includes the change of mouse pointers, having

different character styles or colors, and so on.

25

V. IMPLEMENTATION

In this chapter, we discuss the details of the implementation effort.

A. INTERFACE-DRIVEN SOFTWARE DEVELOPMENT TOOL

Interface software is often large, complicated, and difficult to debug and modify.

And interface software is difficult to write because frequently it must control many

devices, each of which may be sending a stream of input events asynchronously. An

application's interface can account for significant amount of codes. The easy-to-use,

direct-manipulation interface--. in many modem systems let the user operate directly on

objects that are vi'bl - in the screen, performing rapid, reversible, incremental actions.

Interfaces are iot only difficult to create, but there are no design strategies that guarantee

the resifring interface will be easy to learn or easy to use. To address the problems,

many tools have been created to make interfaces cheaper and easier to design and

implement.

1. Classes of Softwares for Building Graphical User Interface

We can classify softwares into two categories with which we can construct

graphical user interfaces. They are toolkits, and user interface management systems [Ref.

2, 14].

a. Toolkits

A toolkit is a library of interaction technique. An interaction technique is a

26

way of using a physical input device to input a value, along with the feedback that

appears on the screen. Some of the interaction techniques include menus, scroll bars, and

on-screen buttons operated with the mouse. This provides programming abstractions for

constructing user interfaces. The examples of these softwares include the X toolkit.

These toolkits include objects that are composed of the data to be edited such as text,

bitmaps, and more complicated objects such as spreadsheets. These objects can be

embedded in multimedia documents. Programmers can specify constraints between

objects. The constraints assure that a graphical object stays within a prescribed area or

that two visually connected objects stay connected when one or the other is translated.

The disadvantages of using toolkits are that they provide limited interaction

styles and are sometimes expensive to create and difficult to use. A toolkit typically

includes many interaction procedures that implement many interaction techniques. It is

often not clear how to use those procedures to create desired interfaces.

b. User Interface Management Systems

A user interface management system is an integrated set of tools that help

programmers create and manage lots of aspects of interfaces. These are, in general,

characterized by the separation of the code which implements the user interface to an

application from the code for the application itself and the specification of the user

interface at a higher level of abstraction than general-purpose programming languages.

They minimize the interaction between the application and the interface to maximize their

independence. And they usually emphasize abstracting the syntax and semantics of the

27

user interface.

Its primary purpose is that the interface developers and even end-users can

design and modify the interface quickly without requiring experienced programming skills

or knowledge of the application. They use special-purpose languages or other

representations mechanisms such as finite-state transition diagrams to describe the

appearance of the interface and the kinds of interaction it supports. And the specifications

are interpreted at run time.

The example of this class includes the Graphical user interface management

system. It lets users define the interface, at least partially, by placing objects on the

screen with a mouse. Because the visual representation of the interface is one of its most

important aspects, a graphical tool is the most appropriate way to specify that

representation. It lets the users place interaction techniques such as menus, buttons, and

scroll bars on the screen.

2. EVALUATION OF GUIDE AND LOGIIX

Guide is an interface building software that can be run on the IBM personal

computer or compatibles. The IBM PC has not provided a powerful environment for

graphical user interface without the use of specialized software such as Microsoft

Windows. Therefore, Guide has to work through an additional layer of software

[Figure5.I]. This makes the application slow, since the command has to be interpreted,

and received at each layer.

Users can manipulate text, data, graphics, or combinations of these on screen, and

28

move easily among different types of information with varying levels of detail without

much knowledge of systems software or experience with application development.

As stated in the previous section, Logiix is a special-purpose programming

language embedded in Guide. It allows the interface to be built in a simple and intuitive

way. Logiix syntax is similar to the Pascal and C programming languages. Logiix

provides an event-driven processing. The event is a user's selection of what he/she

wants. This provides a flexible structure for building the user interface. That is, what

the developer has to do is only specifying what should happen, not how it has to be

happened. A Logiix program is a list of instructions contained in the definition of a

Guide command button.

One of the strong point of using Guide and Logiix is dynamic data exchange

(DDE). It provides a way to communicate with other MS-Windows applications via MS-

Windows. Figure 5.2 illustrates how DDE works under MS-Windows. DDE in Logiix

provides the interface to allow Guide to act both a DDE client and a DDE server.

a. Compatibility between Guide And Hypercard

Because this implementation has gotten some works from the Argos

developed by using Hypercard on an Apple Macintosh, it will be an interesting work to

compare between Guide and Logiix, and Hypercard and Hypertalk [Ref. 6].

Guide has a data structure called a document. In a document there is at least

one frame of information. Therefore, there can be as many frames as possible. In

Hypercard, it provides a stack which consists of cards. A stack is a Hypercard document

29

and a collection of cards. A card is a basic unit of information in a stack. A card can

contain buttons, texts, and graphics.

A button can be placed on a object in a Guide document. As we mentioned

above, the buttons can open another document, another frame, or launch another

application. Hypercard has the same buttons doing the same work as Guide does. With

Guide buttons, we can manipulate the buttons such as the change of the appearance of

buttons using pop-up menus. In Hypercard, how a button looks depends on its button

style using dialogue box.

We refer to programs behind command buttons as a definition in Guide. And

in Hypercard, it is called a script. It is a sequence of English-like statements that respond

to events such as the user's clicking on a button. In script, there is a collection of

handlers which is a program responding to an event.

In Guide, we can create a link from one object (button) to another which may

be in the same document or in another document. A link can be created in Hypercard

from a button to a card or stack. After a link is placed, clicking the button takes the

same action as Guide button does. We can lock the Guide document by setting a check

mark on the Lock Diagram to prevent its contents from unintended or unauthorized

changes, still let buttons work. There is a field in Hypercard to lock or unlock to control

changes to a stack and a card especially for texts.

A Logiix program is contained in the definition of a Guide command button.

Then it is passed to Logiix. The program is compiled into a intermediate stack-based

30

machine language. Then it is interpreted and executed by a pseudo-machine. The Logiix

program is submitted by clicking on a command button, compiled and executed in a

single step. Each Logiix program, function, for each button is recognized by the file

called GUIDE.S.

In Hypertalk term, a message is an announcement that an event has occurred.

A handler is a respond to an event. Event is such as the clicks on a button. Hypercard

determines what object the user has acted on and uses this as the address for the message.

Then Hypercard will send the message to one of its objects. When an object receives a

message, Hypercard searches the object's script for a handler with the same name. When

it matches, Hypercard runs any Hypertalk statements in the handler until it encounters an

end statement.

B. PORTING IMAGES FROM MACINTOSH

Argos on Apple Macintosh has lots of picture to build its visual interface. Those

pictures have been ported to IBM PC compatible for this research. They were uploaded

to VAX 11-785, the computer science department's main computer, then downloaded to

PC. They are drawn using Macintosh MacPaint. Therefore, we had to convert them to

be used on PC. They were converted using a conversion software called The Graphics

Link version 1.50 developed by TerraVideo Inc., into Microsoft Windows Paint format

with extension MSP. These MSP graphic files were edited by Microsoft Windows Paint

to make them bitmap images. After those works, they have been used to make frames

and documents.

31

C. DEVELOPMENT METHODOLOGY

1. Creation of Documents

The fundamental element in this implementation is a document. A document can

contain either text or graphics, or both. Several graphics are linked to the document and

they are left as external graphics. It is good for developer to change the content of the

graphics not touching the document. For example, info.gui has an internal graphic which

is a part of its document, and if we want to change the content of the internal graphic,

we must create or modify separated graphic file then relink it to the document. However,

with external graphic, it is not needed to relink the graphic file to its document. The

document uses already established link.

Once we create a document, there must be a definition associated with it. That

is, each document has its own definition containing all the definitions in a document

[Figure 5.3]. The definition contains programs, in this implementation, a program in

Logiix, which determine buttons' behaviors. For the command button, it is a program

(script). For example, the definition on the DECK.GUI shows all of its definitions which

specifying which button does what [see Appendix A.2].

2. Creation of Buttons

As mentioned in Chapter 11, anything that can be selected with the mouse can

be made into an button. That is, we can break information into objects and we can attach

attributes to them. Attributes determine objects behavior, presentation and how they

relate to other objects. If an object is activated by mouse click, we refer to it a button.

32

To create buttons, we must deactivate all objects using freeze provided in menu.

We can place a button on a background graphic in a specific location, not the whole

graphic into a button. We can use a transparent graphic element called an invisible which

has handles. We can overlay the invisible on a graphic element to make part of graphic

element into an object. For example, the frame of BAITLEGROUP_ZULU is one

complete graphic. Each ship model is a separate button created from an invisible overlaid

on them [Figure 5.4]. To make an object button, first we select an object then choose a

command for type of button we want to make - reference, expansion. note, or command

button. For example, on the frame of BATTLEGROUPZULU, all the ships and icons

have command buttons. For the object that is surrounded by box, we can navigate

through it because the author has defined more detailed frame beyond it. And the rest

of objects has not yet been defied for more navigation, therefore they simply show an

dialogue box saying "Not Modeled" [Figure 5.5].

3. Programming

Logiix is not an object-oriented language though its environment, Guide, has the

concept of an object. Therefore, there is no code sharing between objects. Although two

or more buttons take the same action, the same code has to be written for each object.

As an example, to print out the window screen dump, we have to write the same program

wherever it is needed. However, LOGiiX provides editing feature which is not a code

sharing, to do this in different concept. They are copy and paste functions. Once a

program is written and the same program is needed elsewhere, we can copy and paste it

33

to the desired place. It helps developers to reduce their effort in writing the same code

repeatedly.

The most common usage of Logiix in this implementation is as the following:

#Logiix
function main()
begin

statementil;

if (comparison) then
begin

statement_i;

end;
statement-n;

end

We can use the menu commands provided in Guide such as open, close, print,

go to next or previous frame, and so on. The commands operate exactly as if a user

selects the menu item manually by clicking on them. It helps the designer to develop

easy interface so that users do not have to select from the menu item. The following

piece of Logiix program illustrates the usage of these.

#1ogiix
function main()
begin

returnvalue = answer(l, "PRINT",
"Do you want to print it ?");

if (returnvalue = 1) then
begin

DoMenuId(1008);
end;

end

34

For the traditional or object-oriented languages, the developer has to program

what they want to have for attributes of screen displays, such as cursor pattern, object

behavior, title bars, scroll bars, and so on. For example, if we want to have the maximize

box on a window, the Actor, an object-oriented language, has to have a following

definition:

Def create(self, par, wName, rect, style)

Acreate(self:Window, par, wName, rect,

style bitOr WS_MAXLMIZEBOX)

In Guide, such function is provided within its pop-up or pull-down menus. For

example, if we want to display the scroll bar, we use the pull-down menu and set the

attribute by simply clicking on it [Figure 5.61.

To implement a dialogue box on the screen, the C++ code should be the

following [Ref. 14]:

const int space = round(.25*inches);
ButtonState* status;
Frame* frame = new Frame(

new VBox(
new VGlue(space, vfil),
new HBox(

new HGlue(space, 0),
new Message("hello world"),
new HGlue(0, hfil)

new VGlue(2*space, 2*vf'l),
new HBox(

new HGlue(0, hfil),
new PushButton("goodbye world", status, false),

new HGlue(space, 0)

35

new VGlue(space, vfil)
)

Before we write this C++ program, we must have the corresponding object structure as

shown in Figure 5.7 [Ref. 14].

But using the Logiix syntax, its equivalent code might be:

#logiix
function main()
begin

messagebox("hello world");
end;

4. Creation of Frames

We can think of frames as chapters of a book. That is, frames provide a way to

structure a document by dividing it into chunks of related information that is easily

manageable. It is really manageable because we can treat a frame as one piece of

information, otherwise we must use scrolling bars through an entire document. For

example, the document START.GUI consists of several frames which are actually bit-map

graphic files such as OPEN.BMP, BATTLEGROUPZULU.BMP,etc [Figure 5.81. We

can handle these graphic files one at a time. However, if we do not make these files

frames, and put them all into a document, then we must use scroll bars which is a time

consuming and a boring work. Figure 5.9 shows the frames and documents in this

implementation. Users can move from one frame to another in sequential order as they

are constructed. It is provided in the menu commands such as Previous Frame, Next

36

Frame, First Frame, and Last Frame. In this implementation, we utilized only the first

three commands. Each frame is inserted using insert frame and place menu command.

If the inserted file is too big (depending upon the system implemented) to fit into

memory, then the system creates a link from a document to that file. Then every time

when the file has to be displayed. it is placed into memory, and removed from memory

after then.

5. Behaviors of Buttons

In this section, I will explain the behaviors of each button and how they support

the principles that satisfy a good user visual interface.

a. The Mouse Pointer Patterns

The mouse pointer pattern changes depending upon where it is placed on the

screen. This improves the appearance and reinforce the purpose of an object, and it also

bring attention to that object. Figure 5.10 illustrates the change of mouse pointer pattern

over a button. And the Figure 5.11 shows how we can change the pattern using set

cursor dialogue as it has to be over buttons. This supports the user principle VII,

customization. Even if an application developer follows every rules and guidelines of a

standard user interface, the usability of the system must still be determined empirically.

And standards do not guarantee that people will like an application or be able to use it

efficiently. Thus, a system has been developed on expectations of populations and , it is

not always true that every user will satisfy in every details. It is necessary for users to

customize the system so that they can take full advantage of it. It is easy and interesting

37

work to customize the system in this working environment as mentioned in subsection 4

above. This supports the principle VIII, the interface must be easily understood, and the

principle X, the interface must attract user's attention.

b. GoForward

GoForward button is indicated by boxed graphic elements or different

character styles or both [see Figure 5.3]. Clicking on this button, the system shows more

detailed interface about the object (real-world model). This button does exactly what the

menu item Next Frame does selected manually. It moves from current frame to next

frame. The button on the frame is created by inserting invisible graphic element and

overlaying it on the desired position. Its definition looks like:

#1ogiix
function main()
begin

DoMenuld(1034);
end

c. GoBackward

The icon indicated by a left arrow is used to go backward from the current

frame [see Figure 5.3]. It has a command in its document definition like:

#1ogiix
function main()
begin

DoMenuId(1033);
end

With the GoForward and GoBackward, the information or interface is

navigated sequentially, except termination in some aspect, as it has been constructed.

38

This implies the concept of visual interface for database, saying that users navigate

through the information database by following the links from one piece of information

to the next.

Though this implementation is not complete with database management

system, users can move from one piece of information (frame) to another seeking what

they wanted.

d. Exit

Users can terminate the running of system and exit to the operating system

(MS-DOS). The icon is indicated a left arrow with a vertical bar [Figure 5.12].

Associating with GoPrevious icon, it goes to the first frame then asks if the user really

wants to exit to the operating system (MS-DOS). If the user click on the OK button, the

system saves all the changes and exits to operating system, otherwise, clicking on the

Cancel it remains the running state. For the Logiix program for this button in definition,

it looks like:

#1ogiix
function main()
begin

returnvalue = answer(l, "EXIT",
"Do you want to exit the system ?");

if (returnvalue = 1) then
begin

closeAll(I + 256);
end;

end

The behavior of this button supports the principle I, the interface must

39

provide more information when asked, and II, recovery from unintended operation. It

asks if a user wants to exit or not, not simply exiting to operating system, Therefore, it

provides a mechanism that prevents the user from unintended exit by requesting the

confirmation of the user's will.

For the experienced users, they can use the system box or a menu command

to exit the system [Figure 5.13]. It is a function provided by an MS-Windows by double

clicking on the system menu box or selecting the Close command form File menu. The

provides a variety way of operating the system for different level of users. Therefore, it

supports the Principle III, performing the same operation in more than one way.

e. Help

Help has been provided for every frame. Figure 5.14 shows the HELP icon

and its contents. It just explains the behaviors of each button. This help button opens

a document which consists of three frames: help on help, help on document(I), and help

on document(ll). These three frames are linked forward and backward. And the

meanings of the icons on help document are the same as the ones on the regular

document described above. This meets the principle IX, the interface must be understood

easily. Therefore even the novice users can use the system without much confusion,

because they can guess what it means and do what they guess. And it also supports the

principle IV, consistent interface. Because the system uses the same interface for the

same operation in a consistent manner, the users do not have misunderstanding or

confusion when navigating through the system.

40

f. Print

The Print icon is also shown on every frame. Clicking on this button, it asks

if users want to print the current frame out to the printer [Figure 5.15]. If the users

answer OK, it shows a print dialogue box. If the users do not want to print out the

screen, they can click on the Cancel button. It also supports the Principle I, providing

more information when asked, II, recovery from unintended operation, and IV, consistent

interface for equivalent operation.

g. Information

In this thesis, the author has implemented the database accessing interface

which does not really access a real (relational) database system. It only provides an

environment for the future utilization. Therefore, the data that you can get is not from

a real database system, but they are actually graphics files created by using Microsoft

Paintbrush. And if there must be some changes for these data, then the user must use the

Microsoft Paintbrush or compatible graphic softwares.

Clicking on the information icon on the

INLETGEARBOXASSEMBLYBREAKDOWN, denoted by INFO, it invokes another

document called INFOINLET.GUI [Figure 5.16]. The other frame except this one, they

do not provide any information. Clinking on those says "Not Modeled" [see Figure 5.41,

because it is just an interface which does not access any information database.

D. SAMPLE SESSION

We can run the system by typing "win guide start.gui" at the DOS prompt. Then the

41

MS-Windows will open the Guide's work environment and again opens the document

START.GUI. It displays its first frame in start.gui [Figure 5.17]. Throughout the demo

we will see some buttons already made, and we can click on the boxed graphic element

to go ahead. Now, lets click on the eye-shaped place. Then it will open the next frame

named BATTLEGROUPZULU will be displayed with almost the same interface

[Figure 5.18]. Among different ships, there is a ship surrounded by box. Again it has

button to go further. Click other ships will cause the system to print a message, Not

Modeled [see vigure 5.4]. Clicking on the boxed ship will open the next frame called

FFG_7 SIDE PROFILE [Figure 5.19]. On this frame we will see a small ship icon in

inversed mode. Clicking on this will open a frame called DECK PROFILE [Figure 5.20].

It is a view of the ship from the sky. To go back to the previous side view frame, we

use a return button, left arrow with its tail up. We are using different button to go back

at this moment. The top view frame is in different document called

DECKPROFILE.GUI. When we click that inversed small ship, it actually opens another

document, not just displaying its next frame in the same document. We can navigate in

this fashion from the first frame to the desired frame. Figures 21 through 26 illustrate

the navigation path. On this frame, clicking on the info button will open another

document called INFOINLE.GUI. Only this button shows some information in this

implementation [Figure 27 through 31]. The information has been made using MS-

Windows PaintBrush. Because it does not access a real database, there is no way to show

what this interface works but this way.

42

When we want to go back to the previous document, we can use the leftarrow button.

It does backtrack from the current frame to the previous frame in the s .,Yr do',,nent

which is different from that of return button. This button is seen in almost every frame.

Clicking on the help icon, it opens a document called HELP.GUI [F;gvrz 3.14 and

Figure 5.32 through 5.33]. When you finish reading the help messages, you will be

returned to the previous document by clicking on the RETURN icon again [see Figure

5.16].

Now lets click on the PRINT icon. It prints the current window out to the default

printer as we went over in the above section [see Figure 5.15]. If you want to terminate

the session while you are in the system, you can do this by clicking on a button with an

arrow and a vertical bar. It will ask you whether you really want to exit to the operating

system or not. Suppose we are at DECKPROFILE frame. Then we have two documents

opened, one is START.GUI and DECK.GUI which are separate documents. If you click

on the EXIT icon to finish your work at this moment, the system takes care of all

document that you have been working on. If there has been any changes into any

document, the system saves any changes if we click on the yes on the dialogue [Figure

5.34].

43

Users

Applications

Guiden

MS-Windows

Figure 5.1 Layers for MS-Windows Applications

MS-Window:

Guide

Figure 5.2 DIDE under MS-Windows

44

Interlice.Drln Sw. Development T..I

a Look7 w

begh
do~Menuld 'HI Mod3 d.")

Figure ~ ~ ~ ~ 4A 5. eiiin Ilkocmn

endIrucDva SW egm'ntTi

Figure 5.4 Diniile inraphiculment

45ctc.rie W eeloelTo

Inudcroivt sw. DOv:Iarpn.(7I1

Figure 5.5 Not Modeled Dialogue

Guide: Set Deajment Op~Ion

fladow Style P
SMu~rnize E]cro I Sir

~j~e Bar

0 7bin Bmar r Maxmize B.K 0 Makr Dr~sult

coffinm: Ilameclace-dwvn SW. DevdipmrA TVAu

D ~ ~ ~ ~ u 0.5 BakIn F-s9
0 SMWhoW PDCmdN

o Share DeInt~ons In MUuis fm
O FaN Pat. kkfrn= ic M de.ramjt

Figure 5.6 Set IDocument Dialogue

46

hqlue tessagt holue thghJe bu 0g

Figure 5.7 Object Structure

APL .t1o 75026 10/23/93 20:49 .A..
DATT.8tv 71110 10/29/90 21:13 .A..
COSALI.BGiP 74782 10/23190 20:49 ,A..
OECK.BMP 71110 10/19/90 13:43 A..
ENGIHE.BIP 71110 10/19/90 14:12 A..
EQUIPA AMP 76006 10/23/90 20:50 .A..
ERLLPD.IIP 71110 10/19/99 14:14 A..
FFC7.BHP 71110 10/19/90 114:15 .A..
FOR HS1.8iP 90934 10/23/90 20:51 .A..
GAS.BP 71110 10/19/90 14:25 A..
CIR0.91P 71110 10123/90 21:93 .A..
INLE..BliP 71110 10/21/90 23:02 .A..
U0,2500.BtP 71110 11/0S/90 0:02 A..
My FRAME.DI 72478 10/29/90 20:55 A..
oPiEmmi 71110 10/22/99 13:32 .A..

Figure 5.8 Graphic Files Made into Frames

47

RL~ftHELP

Figure 5.9 Documents and Frames

- IrtetcflceNven OW. Ocwlopment Tool

BATTLE GROUP 21ULU

IMCAUJGW(VA9.. I

Figure 5.10 Mouse Pointer Pattern Change

48

°* tmcf c.-om1T 5' .oezootmeut TeootL

get Cursor

Figure 5.11 Set Mouse Pointer Pattern Dialogue

-'iPortrSi d o n+ te e

I yo D nt o ft cr GyLteri I

Figure 5.12 Exit Dialogue

49

Iuora-mv OW. Dmiehmet Tol

Move CtMl.F7
Size Ctul.FU EKPOL
minimize CtrI.F9
Maximize Ctt.Ft
Cloze Ctrl.F4 0 o

Swftcli To... Ct#Etc k.

Figure 5.13 System Box

HELP

oil1? ON RILP

.g flI~ u ilopm hlpitdow.

* D1 Gel neid help window. li

Fle P WIbe ccet help wil4ou.

Figure 5.14 Help

50

- ~ llae Orivei 3W. Dmieopriecof Tool

ENGINE ROOMI LEYEL FELECETION

UrDctr Lel PRINT
Part Side Jpw Level

0 yes word to ,gsllhtwo ? rioside

Figure 5.15 Print Dialogue

* lnicfc OnwoSW. Dcipmnlt Co

MET GEAR BOX ASSEMBL

Figure. 5.16 Information Document on Inlet Gearbox Assembly
Breakdown

51

Intorface-O,,ygn CW. Developmnnt Tool

[HTERICE-RLJ[H SV. JEEIFINE [O

Figure 5.17 The First Frame of Sample Session

, nterfeceDnven OW D - oapmentTol

BATTLE GROUP 2ULU

LMCAUXM ING 9412

UGS HE (DOG w M RIM LG331 .z

Figure 5.18 Battle Group Zulu

52

a Interface -Driven Y. DCEvIopMgni Tool

rrG-7 SIDE PRO F1Lf

Figure 5.19 FFG-7 Side Profile

IrAeicrz-riven SW. Dievropmeud Teal

DECK PROFILE

Figure 5.20 Peck Profile

53

ENGINE nQOM LEYFI i FCETION

Upp tr Lq901Lp rLee

Figure 5.21 Engine Room Level Selection

- Intciface-Drimen 3W. Deytlvpmtn[Tool

FNGINF ROOM LOWER LEFVEL PQR7

~ £W!a s4?q~ 1 ~~J~vhAir C~tr

L/FOb 1 0~~.~~ 1? r. Prep.r~ Y.'

wrw - - -I , r".,4

t/ R ,+nt,? 'r bo ,cr h* iml r M. Erd.6NO.P

t 1.TYi 1101 1W,,, MIPiO~I0I~i~

Figure ~ ~ ~ ~ M 5.2Egn"'o oe or
54 t~rTd VU nlw

Interlece-OgIven 3W. Developmen! Tool

GAS TUABINE MODULE

Figure 5.23 Gas Turbine Module

",- Intcrface-Divn OW. Dcvclopmtnt Tool

LK2spn Cas TufINlE

Combustor Section

ICONVror SCdIbn Turbing Sect ion

Figure 5.24 LM2500 Gas Turbine

55

In lenface-Drvel S. Deyelopment 1o0 W

(JIRO EXF.ODED VIEW

Cmrb~F Coflrmier FI)tor Orwn kr

Trlrof rr r

Figure 5.25 GTRB Exploded View

-] Interf©c, Driyen OW. Development Tool

INLET CEAR BOX ASSEHSLY

Figure 5.26 Inlet Gearbox Assembly

56

Equipment
u'c NUMS5 G'AI 23411A Prm.Re, C9325
rn Aft TFYr'; '1,19 NS

Ar 53193105 CAT ALT Fo

Eic D111F30C9325 SCAT Cos _p,

rzcY L W,. 000001 AD. COL
Locun 5-250--E 11t, Or 1i LF P1.1 RM

VC EQPT I lstaijr H.1l ["tirAl V
VC C-rT AL TS ACT Pfl SAc DAUWM
Pwm' l 511 RIRY swt B1r 3

3?1 A1S1 List Ltdi; 05221
, .N UIdatt JCN Ls4t Ur Wdill IMP
LI MNPHIPLN GI B R 93b IE932 C9--____3__
TrT?I-IH?1

r,,more DIc G 11B IA CTAJ-IBtX AS SY. INLET

Figure 5.27 Equipment Information

COSAL
I trt m GEAF1DOX ASSY, INLE1 AP. 653170005
StcckNurter 512caU00t 079 COo so

Port Number L20102602 FSWi 91G62

Unit of Issue EA AiomiO QU1 000
,llowence Code Appliction tq 001

Source Code PA Malnt Code 5Z

tlil Control Code Recovmreblllty Code Z

tlotl Content Code CIPNr

Figure 5.28 COSAL Information

57

Noyoup Form 1290-1

1. 1b' k tw Rlj fR 0. Af.A IfC l.lnrQiy 12. its Z.Obl kit 0. ro.l..j

HHU05-1 I I /C - *..i

Jj0Tmrv=11F I I~ Ellum MARI Its.n
i. cc~ 10 20.~ 11 5 7.. I 2 451 b' is u2 9.d? I

TI Tra If
1S.3O viny 8 I M r r I V.' P I DJA 132 1011103 _ E I

Figure~~~~~U 5.29vi NofpFr 20- nonto

Nonl~nc~tur9 GERF3OX ASY. IN 1. GEFNI MDBY MSOP10

LSSC~~~ I IlgI DID
60NC RIOP It c Lq n Dist C t r r RlA

Figurace 52 ivupFr 25-iIfrmto

AL 1700 I'll IN 000606 oull00 000
CO HTTERN N7402 EQUI SC-00

INAC pte User A ll p CeOLt fl720

E[or4 m-31c

Figure 5.30 APL Informnation

58

LOGIiX

Not Modeled yet.

Figure 5.31 Not Modeled dialogue

HELP

IRLP OH DOCImIH! (I)

I HELP Get helpwIndow.

~ !IRHHAIK End the IDOSessilon.

* PRIU 11 D13PiaY the PrevloUa document
window.

Figure 5.32 Help on Document (!)

59

ELPL O H EH (II)

G Go-Last Co to the very lost window.

PRINT CliCk an hl!t button will print the
current window out to printer.

IIH INFONHAION Display Informaion menus
rclatina to current window.

Figure 5.33 Help on Document (11)

-j Irterlmec-Dilyvn 8W. Dcciopmel Tool -

IJ~CI-DIVV. DEDIOMNT Joe

Do you want to save cealic made to

cL-.%WQPWTART.C'Ui

Figure 5.34 Save or Not Dialogue

60

VI. CONCLUSION

We need tools to keep wp the pace with the increasing amount of information. The

traditional database systems are limited in their ability in dealing with a record-based

data, and the users have to be familiar with database technology to take a full advantage

of database systems as information managers.

Therefore, in this regard, we have built a visual interface with which end-users can

manipulate the information being visually represented on the computer screen. So, the

users can navigate through the database by following the links from one piece of

information to the next. This increases the end-users' paticipation, thus can be a more

powerful information.

Since we have employed a windowing software, MS-Windows, we can build

graphical interfaces on IBM PC's and compatibles which are widely used. And, since we

used an interface-driven software which provides the concept of object, it supports rapid

prototyping and incremental development.

The possible following research will be combining the interface frame with real

database systems supported by MS-Windows, such as Superbase 4.

61

APPENDIX A.- PROGRAM LISTS

1. Start

#Logiix
{open, go to next frame)
function main()
begin

doMenuld(1034);
end

#Logiix
I open, ask to exit)
function main()
begin

retl := answer(I, "EXIT", "Do you want to exit the system ?");
if (ret 1 = 1) then
begin

closeAll(1+256);
end;

end

#Logiix
(open, open help windows)
function main()
begin

open("help.gui",0, 1);
end

#Logiix
(open, ask to print)
function main()
begin

Ret2 := answer(1,"PRLNT", "Do you want to print this ?");
if (ret2 = 1) then

62

begin
doMenuld(1008);

end;
end

#Logiix
Iopen, dialog box for "info")
function main()
begin

messageBox("Not Modeled.\.nNo Information.");
end

#Logiix
(battle, open help windows }
function main()
begin

open("help.gui",0, 1);
end

#Logiix
(battle, ask to print)
function main()
begin

ret3 := answer(l,"PRINT", "Do you want to print this ?");

if (ret3 = 1) then
begin

doMenuld(1008);
end;

end

#Logiix
(battle, go to next frame)
function main()
begin

doMenuld(1034);

63

end

#Logiix
(battle, go to previous frame)
function main()
begin

doMenuld(1033);
end

#Logiix
(battle, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(battle, display message box)
function main()
begin

mes ageBox("Not Modeled.");
end

#Logh '

I(batik- display message box)
function main()
begin

mes ageBox("Not Modeled.");
end

#Logii'-
(battle, display message box)
function main()
begin

64

messageBox("Not Model--d.");
end

#Logiix
(battle, display message box
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(battle, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(battle, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(battle, dialog box for info)
fuinction~ main()
begin

messageBox("Not Modeled.NnNo Information.");
end

#Logiix
(battle, ask to exit)
function main()
begin

doMenuld(1032);

65

ret4 := answer(l, "EXIT", "Do you want to exit the system ?");
if (ret4 = 1) then
begin

closeAll(1 +256);
end;

end

#Logiix
Iffg-7, go to previous frame)
function main()
begin

doMenuld(1033);
end

#Logiix
Iffg-7, ask to exit)
function main()
begin

doMenuId(1032);
ret5 := answer(1, "EXIT", "Do you want to exit the system ?");

if (ret5 = 1) then
begin

closeAll(1+256);
end;

end

#Logiix
(ffg-7, ask to print}
function main()
begin

ret6 := answer(I,"PRINT", "Do you want to print this ?");
if (ret6 = 1) then
begin

doMenuld(1008);
end-

end

66

#Logiix
J ffg-7, open "deck.gui"
function main()
begin

open('deck.gui",O, 1);
end

#Logiix
fffg-7, open help windows)I
function main()
begin

open('help.gui" ,O, 1);
end

#Logiix
(ffg-7, dialog box for infoj
function main()
begin

messageBox("Not Modeled.\nNo Information.");
end

#Logiix
(ffg-7, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
iffg-7, display message box)
function main()
begin

messageBox("Not Modeled.");
end

67

#Logiix
I ffg-7, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
I ffg-7, go to next frame)I
function main()
begin

doMenuld(1034);
end

#Logiix
I engine rm level, go to previous frame)
function main()
begin

doMenuld(1033);
end

#Logiix.
engine rm level, ask to exit)

function main()
begin

doMenuld(1032);
ret7 :=answer(1, "EMTI", "Do you want to exit the system ?)

if (ret7 = 1) then
begin

closeAl(I 1+256);
end;

end

#Logiix
I(engine rm level, ask to print)
function main()

68

begin
ret8 :=answer(l,"PRINIT"', "Do you want to print this ?)
if (ret8 = 1) then
begin

doMenuld(1008);
end;

end

#Logiix
(engine rm level, open help windows)I
function niain()
begin

open("help.gui",0, 1);
end

#Logiix
(engine rm level, dialog box for info
function main()
begin

messageBox("Not Modeled7'nNo Information.");
end

#Logiix
(engine rn level, go to next frame)
function main()
begin

doMenuld(1034);
end

#Logiix
(engine rm level, go to next frame)
function main()
begin

69

doMenuld(1034);
end

#Logiix
I engine rm level, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
I engine rm level, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(engine rm level, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#LOguix
(erilpo, go to previous frame)
function main()
begin

doMenuld(1033);
end

#Logiix
(erilpo, ask to exit)

70

function main()
begin

doMenuld(1032);
ret9 := answer(l, "EXIT", "Do you want to exit the system 7");
if (ret9 = 1) then
begin

closeAll(1+256);
end;

end

#Logiix
(erilpo, ask to print)
function main()
begin

retlO := answer(l,"PRINT", "Do you want to print this ?");

if (retlO = 1) then
begin

doMenuId(1008);
end;

end

#Logiix
{erllpo, open help windows)
function main()
begin

open("help.gui",0, 1);
end

#Logiix
Ierlpo, dialog box for info)
function main()
begin

messageBox("Not Modeled.\nNo Information.");
end

#Logiix
(erllpo, go to next frame)

71

function main('
begin

doMenuld(1034);
end

#Logiix
(erilpo, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
erlipo, display message box)

function main()
begin

messageBox("No Modeled.");
end

#Logiix
(gas turbine, go to next frame)
function main()
begin

doMenuld(1034);
end

#Logiix
(gas turbine, go to next frame)
function main()
begin

doMenuld(1034);
end

#Logiix

72

(gas turbine, go to next frame)
function main()
begin

doMenuld(1034);
end

#Logiix
(gas turbine, go to previous frame)
function main()
begin

doMenuld(1033);
end

#Logiix
(gas turbine, dialog box for info)
function main()
begin

messageBox("Not Modeled.\nNo Information.");
end

#Logiix
(gas turbine, ask to print)
function maino
begin

reti 1 I =inswer(,"PRENT', "Do you want to print this ?)

if (retlIl = 1) then
begin

doMenuld(1008);
end;

end

#Logiix
(gas turbine, ask to exit)
function main()
begin

doMenuld(1032);
ret 12 -= answer(1, "EXIT", "Do you want to. exit the system 7)

73

if (retl2 = 1) then
begin

closeAl(1+256);
end;

end

#Logiix
gas turbine, open help windows)

function main()
begin

open("help.gui" ,0, 1);
end

#Logiix
I 1m2500, go to next frame)
function main()
begin

doMenuld(1034);
end

#Logiix
(1m2500, open help windows)
function main()
begin

open(" help.gui",0, 1);
end

#Logiix
(1m2500, go to next frame)
function main()
begin

doMriud(1034);
end

74

#Logiix
1Im2500, display message box)

function main()
begin

messageBox("Not Modeled.");
end

#Logiix
J1m2500, ask to exit)
function main()
begin

doMenuld(1032);
retl3 :=answer(l, "EXI", "Do you want to exit the system ?)

if (retl3 = 1) then
begin

closeAll(1+256);
end;

end

#Logiix
1lm25 00, dialog box for info)

function main()
begin

rnessageBox("Not Modeled.\nNo Information.");
end

#Logiix
(1m2500, ask to print)
function main()
begin

retl4 :=answer(l, "PRINT", "Do you want to print this ?)

if (retl4 = 1) then
begin

doMenuld(1008);
end;

end

75

#Logiix
I 1m25 00, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
lm25 00, display message box)

function main()
begin

messageBox("Not Modeled.");
end

#Logiix
Ilm2500, display message box)

function main()
begin

messageBox("Not Modeled.");
end

#Loguix
(1m25 00, go to previous frame)
function main(
begin

doMenuld(1033);
end

#Logiix
(gtrb, display message box)
function main()
begin

messageBox("Not Modeled.");
end

76

#Logiix
gtrb, open "inlet.gui")

function main()
begin

opent'iniet.gui",Ojl);
end

#Logiix
(gtrb, display message box)

function main()
begin

messageBox("Not Modeled.");
end

#Logiix
gtrb, display message box)

function main()
begin

messageBox("Not Modeled.");
end

#Logiix
gtrb, display message box)

function main()
begin

messageBox("Not Modeled.");
end

#Logiix
I gtrb, display message box)
function main()
begin

messageBox("Not Modeled.");
end

77

#Logiix
(gtrb, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(gtrb, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
Igtrb, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(gtrb, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(gtrb, go to previous frame)
function main()
begin

doMenuld(1033);
end

#Logiix

78

{gtrb, ask to exit)
function main()
begin

doMenuld(1032);
ret15 := answer(l, "EXIT", "Do you want to exit the system ?");
if (retl5 = 1) then
begin

closeAU(1+256);
end;

end

#Logiix
{gtrb, ask to print)
function main()
begin

retl6 := answer(1,"PRINT", "Do you want to print this ?");
if (retl6 = 1) then
begin

doMenuld(1008);
end;

end

#Logiix
{gtrb, open help windows)
function main()
begin

open("help.gui",0, 1);
end

#Logiix
{gtrb, dialog box for info)
function main()
begin

messageBox("Not Modeled.NnNo Information.");
end

79

2. Deck Profile

#Logiix
I(deck, return to main program)
function main()
begin

close(0, 1+256);
end

#Logiix
deck, ask to print)

function main()
begin

ret17 :=answer(1, "PRINT', "Do you want to print this ?)

if (ret17 = 1) then
begin

doMenuld(1008);
end;

end

#Logiix
(deck, open help windows)
function main()
begin

open(" help. gui" ,0, 1);
end

#Logiix
(deck, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix

80

(deck, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(deck, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(deck, open information window)
function main()
begin
open("info.gui",O,1);
end

#Logiix
(deck, ask to exit)
function main()
begin

retl8 := answer(l, "EXIT", "Do you want to exit the system ?");

if (ret 18 = 1) then
begin

closeAll(1+256);
end;

end

81

3. Inlet Gearbox Assembly Breakdown

#Logiix
(inlet, return to main program)
function main()
begin

close(0, 1+256);
end

#Logiix
(inlet, open information window)
function main()
begin

open("infoinle.gui",0, 1);
end

#Logiix
(inlet, ask to exit)
function main()
begin

retl9 := answer(l, "EXIT", "Do you want to exit the system ?");
if (retl9 = 1) then
begin

closeAUl(1+256);
end;

end

#Logiix
I inlet, ask to print }
function main()
begin

ret20 := answer(l, "PRINT", "Do you want to print this ?");
if (ret20 = 1) then
begin

doMenuld(1008);
end-

end

82

#Logiix
inlet, open help window)

function main()
begin

open('help.gui" ,O, 1);
end

83

4. Help

#Logiix
13, go to next frame)
function main()
begin

doMenuld(1034);
end

#Logiix
(3, go to previous frame)
function main()
begin

doMenuld(1033);
end

#Logiix
(2, go to previous frame)
function main()
begin

doMenuld(1033);
end

#Logiix
(2, go to next frame)
function main()
begin

doMenuld(1034);
end

#Logiix
11, go to previous frame)
function main()
begin

doMenuld(1033);
end

84

#Logiix
11, go to next frame)
function main()
begin

doMenuld(1034);
end

#Logiix
11, return to main program)
function main()
begin

close(0,1+256);
end

#Logiix
(2, return to main progran}
function main()
begin

close(0,1+256);
end

#Logiix
{3,return to main program)
function main()
begin

close(0,1+256);
end

#Logiix
(1, ask to print)
function main()
begin

ret2l := answer(1,"PRINT", "DO you want to print this ?");
if (ret2l = 1) then
begin

doMenuld(1008);

85

end;
end

#Logiix
(2, ask to print)
function main()
begin

ret22 := answer(1,"PRINT", "DO you want to print this 7");
if (ret22 = 1) then
begin

doMenuIld(1008);
end;

end

#Logiix
(3, ask to print)
function main()
begin

ret23 := answer(1,"PRINT", "DO you want to print this ?");
if (ret23 = 1) then

begin
doMenuld(1008);

end;
end

86

5. Information on Inlet Gearbox Assembly

#Logiix
(info -inlet)
function main()
begin

open("cosall.gui",O,1);
end

#Logiix
(info-inlet)
function main()
begin

messageBox("Not Modeled yet.");
end

#Logiix
I info-inlet)
function main()
begin

open(" forms 1.gui",O,l1);
end

#Logiix
info inlet)

function main()
begin

open("apl.gui" ,O, 1);
end

#Logiix
(info inlet)
function main()
begin

close(O, 1+256);,
end

87

#Logiix
info inlet)

function main()
begin

open("equipl.gui",O, 1);
end

88

LIST OF REFERENCES

1. Andrew Monk, "Fundamentals of Human-Computer Interaction," Academic Press,
Inc., 1984.

2. Brad A. Myers, "User-Interface Tools: Introduction and Survey," IEEE Software,
Jan. 1989.

3. C. Thomas Wu, "Development of a Visual Database Interface - An Object-oriented
Approach," NPS. Monterey, CA.

4. Duff, C., et al, "Actor Language Manual," The Whitewater Group, Inc., 1989.

5. David Maier, Zacob Srein, Allen Otis, Alan Purdy, "Development of an
Object-oriented DBMS," ACM, 1986.

6. Dan Shafer, "HyperTalk Programming," Hayden Books, 1989.

7. Dave Thomas, "What's in an Object," Byte, March 1989.

8. George Copeland, David Maier, "Making Smailtalk a Database System," ACM,
1984.

9. "Guide 3.0 Reference Manual," Precision. Inc., 1990.

10. H.R. Hartson and D. Hix, "Human-Computer Interface Development," ACM
Computing Surveys, Vol.21, No.1, March 1989.

11. J. Banerjee, H. Chou, Jorge F, Garza, W. Kim, D. Woelk, N. Ballou, and H. Kim,

"Data Model Issues for Object-Oriented Application," ACM Transactions on Office
Information Systems, Vol. 5, No. 1, Jan. 1987.

12. Kathleen Potosnak, "Mental Models: Helping Users Understand Software," IEEE
Software, Sept. 1989.

13. Kathleen Potosnak, "Do Icons make User Interface Easier to Use " IEEE Software,

May 1988.

89

14. Mark A. Linton, John M. Vlissides, and Paul R. Calder, "Composing User Interfaces
with InterViews," IEEE, Feb. 1989.

15. Mahesh H. Dodani, Charles E. Hughes, and J. Michael Moshell, "Separation of
Powers," Byte, March 1989.

16. Thomas Atwood, "Applying the Object Paradigm to Databases," Computer
Language, Sept. 1990.

17. William Geobel Anthony Sympson III, "Graphics Interface for Attribute Based Data
Language Queries from a Multi-lingual, Multi-model, Multi-Backend Database
system over an Ethemet Network," Masters Thesis, Naval Postgraduate School,
Monterey, Ca., Dec. 1989.

90

INITIAL DISTRIBUTION LIST

1. Defence Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, California 93943-5002

3. Curriculum Office, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5002

4. Professor C. Thomas Wu (Code CS/Wq) 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5002

5. Professor Myung W. Suh (Code AS/Su)
Administration Science Department
Naval Postgraduate School
Monterey, California 93943-5002

6. Professor Kyung-Chang Kim (Code CS/Ki)
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5002

7. Professor Dong-Soo Kim (Code ME/Km)
Mechanical Engineering Department
Naval Postgraduate School
Monterey, California 93943-5002

91

8. Captain Jae-Du Jung
SMC 1504, Naval Postgraduate School
Monterey, California 93943-5002

9. Captain Jung-Hyun Park
SMC 1818, Naval Postgraduate School
Monterey, California 93943-5002

10. Korea Military Academy Library
P.O. Box 77, Gong-Neung Dong,
No-Won Gu, Seoul,
South-Korea, 132-240

11. Army Central Library
Army Heaquarter, Bu-Nam Ri,
Du-Ma Myeon, Non-San Gun, Chung-Nam,
South-Korea, 320-919

12 Captain Heung-Taek Kimn
267-9, Kan-Seok Dong, Nam-Dong Gu,
In-Cheon, South-Korea

92

